
ssd1306 Documentation
Release 1.5.0

Richard Hull

Jan 26, 2017

Contents

1 Introduction 1

2 Python usage 3
2.1 Color Model . 4
2.2 Landscape / Portrait Orientation . 4
2.3 Examples . 4
2.4 Emulators . 6

3 Hardware 7
3.1 Identifying your serial interface . 7
3.2 I2C vs. SPI . 7
3.3 Tips for connecting the display . 7
3.4 Pre-requisites . 8

4 Installation 11
4.1 From PyPI . 11
4.2 From source . 12

5 API Documentation 13
5.1 oled.device . 13
5.2 oled.emulator . 15
5.3 oled.error . 16
5.4 oled.mixin . 17
5.5 oled.render . 17
5.6 oled.serial . 17
5.7 oled.threadpool . 18
5.8 oled.virtual . 19

6 References 23

7 Contributing 25
7.1 GitHub . 25
7.2 Contributors . 25

8 ChangeLog 27

9 The MIT License (MIT) 29

i

Python Module Index 31

ii

CHAPTER 1

Introduction

Interfacing OLED matrix displays with the SSD1306, SSD1325, SSD1331 or SH1106 driver in Python 2 or 3 using
I2C/SPI on the Raspberry Pi and other linux-based single-board computers: the library provides a Pillow-compatible
drawing canvas, and other functionality to support:

• scrolling/panning capability,

• terminal-style printing,

• state management,

• color/greyscale (where supported),

• dithering to monochrome

The SSD1306 display pictured below is 128 x 64 pixels, and the board is tiny, and will fit neatly inside the RPi case.

1

https://github.com/rm-hull/ssd1306/wiki/Usage-&-Benchmarking

ssd1306 Documentation, Release 1.5.0

See also:

Further technical information for the specific devices can be found in the datasheets below:

• SSD1306

• SSD1325

• SSD1331

• SH1106

Benchmarks for tested devices can be found in the wiki.

As well as display drivers for various physical OLED devices there are emulators that run in real-time (with pygame)
and others that can take screenshots, or assemble animated GIFs, as per the examples below (source code for these is
available in the examples directory:

2 Chapter 1. Introduction

https://github.com/rm-hull/ssd1306/wiki/Usage-&-Benchmarking
https://github.com/rm-hull/ssd1306/tree/master/examples

CHAPTER 2

Python usage

The screen can be driven with python using the oled/device.py script. There are two device classes and usage is
very simple if you have ever used Pillow or PIL.

First, import and initialise the device:

from oled.serial import i2c
from oled.device import ssd1306, ssd1331, sh1106
from oled.render import canvas

rev.1 users set port=0
substitute spi(device=0, port=0) below if using that interface
serial = i2c(port=1, address=0x3C)

substitute ssd1331(...) or sh1106(...) below if using that device
device = ssd1306(serial)

The display device should now be configured for use. The specific ssd1306, ssd1331 or sh1106 classes all
expose a display() method which takes an image with attributes consistent with the capabilities of the device.
However, for most cases, for drawing text and graphics primitives, the canvas class should be used as follows:

with canvas(device) as draw:
draw.rectangle(device.bounding_box, outline="white", fill="black")
draw.text((30, 40), "Hello World", fill="white")

The oled.render.canvas class automatically creates an PIL.ImageDraw object of the correct dimensions
and bit depth suitable for the device, so you may then call the usual Pillow methods to draw onto the canvas.

As soon as the with scope is ended, the resultant image is automatically flushed to the device’s display memory and
the PIL.ImageDraw object is garbage collected.

3

https://pillow.readthedocs.io/en/latest/
https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html#module-PIL.ImageDraw
https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html#module-PIL.ImageDraw

ssd1306 Documentation, Release 1.5.0

2.1 Color Model

Any of the standard PIL.ImageColor color formats may be used, but since the SSD1306 and SH1106 OLEDs are
monochrome, only the HTML color names "black" and "white" values should really be used; in fact, by default,
any value other than black is treated as white. The canvas object does have a dither flag which if set to True, will
convert color drawings to a dithered monochrome effect (see the 3d_box.py example, below).

with canvas(device, dither=True) as draw:
draw.rectangle((10, 10, 30, 30), outline="white", fill="red")

There is no such constraint on the SSD1331 OLED which features 16-bit RGB colors: 24-bit RGB images are down-
sized to 16-bit using a 565 scheme.

The SSD1325 OLED supports 16 greyscale graduations: 24-bit RGB images are downsized to 4-bit using a Luma
conversion which is approximately calculated as follows:

Y’=0.299R’+0.587G’+0.114B’

2.2 Landscape / Portrait Orientation

By default the display will be oriented in landscape mode (128x64 pixels for the SSD1306, for example). Should you
have an application that requires the display to be mounted in a portrait aspect, then add a rotate=N parameter when
creating the device:

from oled.serial import i2c
from oled.device import ssd1306, ssd1331, sh1106
from oled.render import canvas

serial = i2c(port=1, address=0x3C)
device = ssd1306(serial, rotate=1)

Box and text rendered in portrait mode
with canvas(device) as draw:

draw.rectangle(device.bounding_box, outline="white", fill="black")
draw.text((10, 40), "Hello World", fill="white")

N should be a value of 0, 1, 2 or 3 only, where 0 is no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

The device.size, device.width and device.height properties reflect the rotated dimensions rather than
the physical dimensions.

2.3 Examples

After installing the library, enter the examples directory and try running the following examples:

4 Chapter 2. Python usage

https://pillow.readthedocs.io/en/latest/reference/ImageColor.html#module-PIL.ImageColor

ssd1306 Documentation, Release 1.5.0

Example Description
3d_box.py Rotating 3D box wireframe & color dithering
bounce.py Display a bouncing ball animation and frames per second
carousel.py Showcase viewport and hotspot functionality
clock.py An analog clockface with date & time
colors.py Color rendering demo
crawl.py A vertical scrolling demo, which should be familiar
demo.py Use misc draw commands to create a simple image
game_of_life.py Conway’s game of life
grayscale.py Greyscale rendering demo
invaders.py Space Invaders demo
maze.py Maze generator
perfloop.py Simple benchmarking utility to measure performance
pi_logo.py Display the Raspberry Pi logo (loads image as .png)
savepoint.py Example of savepoint/restore functionality
starfield.py 3D starfield simulation
sys_info.py Display basic system information
terminal.py Simple println capabilities
tv_snow.py Example image-blitting
welcome.py Unicode font rendering & scrolling

By default, all the examples will asume I2C port 1, address 0x3C and the ssd1306 driver. If you need to use a
different setting, these can be specified on the command line - each program can be invoked with a --help flag to
show the options:

$ python pi_logo.py -h
usage: pi_logo.py [-h] [--config CONFIG]

[--display {ssd1306,ssd1331,sh1106,capture,pygame,gifanim}]
[--width WIDTH] [--height HEIGHT] [--rotate {0,1,2,3}]
[--interface {i2c,spi}] [--i2c-port I2C_PORT]
[--i2c-address I2C_ADDRESS] [--spi-port SPI_PORT]
[--spi-device SPI_DEVICE] [--spi-bus-speed SPI_BUS_SPEED]
[--bcm-data-command BCM_DATA_COMMAND]
[--bcm-reset BCM_RESET]
[--transform {none,identity,scale2x,smoothscale}]
[--scale SCALE] [--mode {1,RGB,RGBA}] [--duration DURATION]
[--loop LOOP] [--max-frames MAX_FRAMES]

oled arguments

optional arguments:
-h, --help show this help message and exit
--config CONFIG, -f CONFIG

Load configuration settings from a file (default:
None)

--display {ssd1306,ssd1331,sh1106,capture,pygame,gifanim}, -d {ssd1306,ssd1331,
→˓sh1106,capture,pygame,gifanim}

Display type, supports real devices or emulators
(default: ssd1306)

--width WIDTH Width of the device in pixels (default: 128)
--height HEIGHT Height of the device in pixels (default: 64)
--rotate {0,1,2,3}, -r {0,1,2,3}

Rotation factor (default: 0)
--interface {i2c,spi}, -i {i2c,spi}

Serial interface type (default: i2c)
--i2c-port I2C_PORT I2C bus number (default: 1)
--i2c-address I2C_ADDRESS

2.3. Examples 5

ssd1306 Documentation, Release 1.5.0

I2C display address (default: 0x3C)
--spi-port SPI_PORT SPI port number (default: 0)
--spi-device SPI_DEVICE

SPI device (default: 0)
--spi-bus-speed SPI_BUS_SPEED

SPI max bus speed (Hz) (default: 8000000)
--bcm-data-command BCM_DATA_COMMAND

BCM pin for D/C RESET (SPI devices only) (default: 24)
--bcm-reset BCM_RESET

BCM pin for RESET (SPI devices only) (default: 25)
--transform {none,identity,scale2x,smoothscale}

Scaling transform to apply (emulator only) (default:
scale2x)

--scale SCALE Scaling factor to apply (emulator only) (default: 2)
--mode {1,RGB,RGBA} Colour mode (emulator only) (default: RGB)
--duration DURATION Animation frame duration (gifanim emulator only)

(default: 0.01)
--loop LOOP Repeat loop, zero=forever (gifanim emulator only)

(default: 0)
--max-frames MAX_FRAMES

Maximum frames to record (gifanim emulator only)
(default: None)

Note:

1. Substitute python3 for python in the above examples if you are using python3.

2. python-dev (apt-get) and psutil (pip/pip3) are required to run the sys_info.py example. See install
instructions for the exact commands to use.

2.4 Emulators

There are various display emulators available for running code against, for debugging and screen capture functionality:

• The oled.emulator.capture device will persist a numbered PNG file to disk every time its display
method is called.

• The oled.emulator.gifanim device will record every image when its display method is called, and
on program exit (or Ctrl-C), will assemble the images into an animated GIF.

• The oled.emulator.pygame device uses the pygame library to render the displayed image to a pygame
display surface.

Invoke the demos with:

$ python examples/clock.py -d capture

or:

$ python examples/clock.py -d pygame

Note: Pygame is required to use any of the emulated devices, but it is NOT installed as a dependency by default, and
so must be manually installed before using any of these emulation devices.

6 Chapter 2. Python usage

https://github.com/rm-hull/ssd1306/blob/master/examples/sys_info.py#L3-L7
https://github.com/rm-hull/ssd1306/blob/master/examples/sys_info.py#L3-L7

CHAPTER 3

Hardware

3.1 Identifying your serial interface

You can determine if you have an I2C or a SPI interface by counting the number of pins on your card. An I2C display
will have 4 pins while an SPI interface will have 6 or 7 pins.

If you have a SPI display, check the back of your display for a configuration such as this:

For this display, the two 0 Ohm (jumper) resistors have been connected to “0” and the table shows that “0 0” is 4-wire
SPI. That is the type of connection that is currently supported by the SPI mode of this library.

A list of tested devices can be found in the wiki.

3.2 I2C vs. SPI

If you have not yet purchased your display, you may be wondering if you should get an I2C or SPI display. The basic
trade-off is that I2C will be easier to connect because it has fewer pins while SPI may have a faster display update rate
due to running at a higher frequency and having less overhead (see benchmarks).

3.3 Tips for connecting the display

• If you don’t want to solder directly on the Pi, get 2.54mm 40 pin female single row headers, cut them to length,
push them onto the Pi pins, then solder wires to the headers.

• If you need to remove existing pins to connect wires, be careful to heat each pin thoroughly, or circuit board
traces may be broken.

7

https://github.com/rm-hull/ssd1306/wiki/Usage-&-Benchmarking
https://github.com/rm-hull/ssd1306/wiki/Usage-&-Benchmarking

ssd1306 Documentation, Release 1.5.0

• Triple check your connections. In particular, do not reverse VCC and GND.

3.4 Pre-requisites

3.4.1 I2C

The P1 header pins should be connected as follows:

OLED Pin Name Remarks RPi Pin RPi Function
1 GND Ground P01-6 GND
2 VCC +3.3V Power P01-1 3V3
3 SCL Clock P01-5 GPIO 3 (SCL)
4 SDA Data P01-3 GPIO 2 (SDA)

You can also solder the wires directly to the underside of the RPi GPIO pins.

See also:

Alternatively, on rev.2 RPi’s, right next to the male pins of the P1 header, there is a bare P5 header which features I2C
channel 0, although this doesn’t appear to be initially enabled and may be configured for use with the Camera module.

OLED Pin Name Remarks RPi Pin RPi Function Location
1 GND Ground P5-07 GND
2 VCC +3.3V Power P5-02 3V3
3 SCL Clock P5-04 GPIO 29 (SCL)
4 SDA Data P5-03 GPIO 28 (SDA)

Ensure that the I2C kernel driver is enabled:

$ dmesg | grep i2c
[4.925554] bcm2708_i2c 20804000.i2c: BSC1 Controller at 0x20804000 (irq 79)
→˓(baudrate 100000)
[4.929325] i2c /dev entries driver

or:

$ lsmod | grep i2c
i2c_dev 5769 0
i2c_bcm2708 4943 0
regmap_i2c 1661 3 snd_soc_pcm512x,snd_soc_wm8804,snd_soc_core

If you have no kernel modules listed and nothing is showing using dmesg then this implies the kernel I2C driver is
not loaded. Enable the I2C as follows:

$ sudo raspi-config
> Advanced Options > A7 I2C

After rebooting re-check that the dmesg | grep i2c command shows whether I2C driver is loaded before pro-
ceeding. You can also enable I2C manually if the raspi-config utility is not available.

Optionally, to improve performance, increase the I2C baudrate from the default of 100KHz to 400KHz by altering
/boot/config.txt to include:

dtparam=i2c_arm=on,i2c_baudrate=400000

Then reboot.

Next, add your user to the i2c group and install i2c-tools:

8 Chapter 3. Hardware

http://elinux.org/RPiconfig#Device_Tree

ssd1306 Documentation, Release 1.5.0

$ sudo usermod -a -G i2c pi
$ sudo apt-get install i2c-tools

Logout and in again so that the group membership permissions take effect, and then check that the device is commu-
nicating properly (if using a rev.1 board, use 0 for the bus, not 1):

$ i2cdetect -y 1
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- UU 3c -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

According to the man-page, “UU” means that probing was skipped, because the address was in use by a driver. It
suggest that there is a chip at that address. Indeed the documentation for the device indicates it uses two addresses.

3.4.2 SPI

The GPIO pins used for this SPI connection are the same for all versions of the Raspberry Pi, up to and including the
Raspberry Pi 3 B.

OLED Pin Name Remarks RPi Pin RPi Function
1 VCC +3.3V Power P01-17 3V3
2 GND Ground P01-20 GND
3 D0 Clock P01-23 GPIO 11 (SCLK)
4 D1 MOSI P01-19 GPIO 10 (MOSI)
5 RST Reset P01-22 GPIO 25
6 DC Data/Command P01-18 GPIO 24
7 CS Chip Select P01-24 GPIO 8 (CE0)

Note:

• When using the 4-wire SPI connection, Data/Command is an “out of band” signal that tells the controller if
you’re sending commands or display data. This line is not a part of SPI and the library controls it with a separate
GPIO pin. With 3-wire SPI and I2C, the Data/Command signal is sent “in band”.

• If you’re already using the listed GPIO pins for Data/Command and/or Reset, you can select other pins and pass
a bcm_DC and/or a bcm_RST argument specifying the new BCM pin numbers in your serial interface create
call.

• The use of the terms 4-wire and 3-wire SPI are a bit confusing because, in most SPI documentation, the terms
are used to describe the regular 4-wire configuration of SPI and a 3-wire mode where the input and output lines,
MOSI and MISO, have been combined into a single line called SISO. However, in the context of these OLED
controllers, 4-wire means MOSI + Data/Command and 3-wire means Data/Command sent as an extra bit over
MOSI.

• Because CS is connected to CE0, the display is available on SPI port 0. You can connect it to CE1 to have it
available on port 1. If so, pass port=1 in your serial interface create call.

Enable the SPI port:

3.4. Pre-requisites 9

ssd1306 Documentation, Release 1.5.0

$ sudo raspi-config
> Advanced Options > A6 SPI

If raspi-config is not available, enabling the SPI port can be done manually.

Ensure that the SPI kernel driver is enabled:

$ ls -l /dev/spi*
crw-rw---- 1 root spi 153, 0 Nov 25 08:32 /dev/spidev0.0
crw-rw---- 1 root spi 153, 1 Nov 25 08:32 /dev/spidev0.1

or:

$ lsmod | grep spi
spi_bcm2835 6678 0

Then add your user to the spi and gpio groups:

$ sudo usermod -a G spi pi
$ sudo usermod -a G gpio pi

Log out and back in again to ensure that the group permissions are applied successfully.

10 Chapter 3. Hardware

http://elinux.org/RPiconfig#Device_Tree

CHAPTER 4

Installation

Warning: Ensure that the Pre-requisites from the previous section have been performed, checked and tested
before proceeding.

Note: The library has been tested against Python 2.7, 3.4 and 3.5.

For Python3 installation, substitute the following in the instructions below.

• pip pip3,

• python python3,

• python-dev python3-dev,

• python-pip python3-pip.

It was originally tested with Raspbian on a rev.2 model B, with a vanilla kernel version 4.1.16+, and has subsequently
been tested on Raspberry Pi model A, model B2 and 3B (Debian Jessie) and OrangePi Zero (Armbian Jessie).

4.1 From PyPI

Note: This is the preferred installation mechanism.

Install the latest version of the library directly from PyPI:

$ sudo apt-get install python-dev python-pip libfreetype6-dev libjpeg8-dev libsdl1.2-
→˓dev
$ sudo pip install --upgrade ssd1306

11

https://pypi.python.org/pypi?:action=display&name=ssd1306

ssd1306 Documentation, Release 1.5.0

4.2 From source

For Python 2, from the bash prompt, enter:

$ sudo apt-get install python-dev python-pip libfreetype6-dev libjpeg8-dev libsdl1.2-
→˓dev
$ sudo python setup.py install

12 Chapter 4. Installation

CHAPTER 5

API Documentation

OLED display driver for SSD1306, SSD1325, SSD1331 and SH1106 devices.

oled.device.device

oled.device.sh1106

oled.device.ssd1306

oled.device.ssd1325

oled.device.ssd1331

oled.emulator.emulator
oled.mixin.capabilities

oled.virtual.history

oled.virtual.hotspot

oled.virtual.viewport

oled.emulator.capture

oled.emulator.dummy

oled.emulator.gifanim

oled.emulator.pygame

oled.emulator.transformer

oled.virtual.snapshot

oled.virtual.terminal

5.1 oled.device

class oled.device.device(const=None, serial_interface=None)
Bases: oled.mixin.capabilities

Base class for OLED driver classes

13

ssd1306 Documentation, Release 1.5.0

Warning: Direct use of the command() and data() methods are discouraged: Screen updates should
be effected through the display() method, or preferably with the oled.render.canvas context
manager.

cleanup()

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

class oled.device.sh1106(serial_interface=None, width=128, height=64, rotate=0)
Bases: oled.device.device

Encapsulates the serial interface to the monochrome SH1106 OLED display hardware. On creation, an initial-
ization sequence is pumped to the display to properly configure it. Further control commands can then be called
to affect the brightness and other settings.

display(image)
Takes a 1-bit PIL.Image and dumps it to the SH1106 OLED display.

class oled.device.ssd1306(serial_interface=None, width=128, height=64, rotate=0)
Bases: oled.device.device

Encapsulates the serial interface to the monochrome SSD1306 OLED display hardware. On creation, an initial-
ization sequence is pumped to the display to properly configure it. Further control commands can then be called
to affect the brightness and other settings.

display(image)
Takes a 1-bit PIL.Image and dumps it to the SSD1306 OLED display.

class oled.device.ssd1325(serial_interface=None, width=128, height=64, rotate=0)
Bases: oled.device.device

Encapsulates the serial interface to the 4-bit greyscale SSD1325 OLED display hardware. On creation, an
initialization sequence is pumped to the display to properly configure it. Further control commands can then be
called to affect the brightness and other settings.

display(image)
Takes a 24-bit RGB PIL.Image and dumps it to the SSD1325 OLED display, converting the image
pixels to 4-bit greyscale using a simplified Luma calculation, based on Y’=0.299R’+0.587G’+0.114B’.

class oled.device.ssd1331(serial_interface=None, width=96, height=64, rotate=0)
Bases: oled.device.device

14 Chapter 5. API Documentation

https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image

ssd1306 Documentation, Release 1.5.0

Encapsulates the serial interface to the 16-bit color (5-6-5 RGB) SSD1331 OLED display hardware. On creation,
an initialization sequence is pumped to the display to properly configure it. Further control commands can then
be called to affect the brightness and other settings.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

display(image)
Takes a 24-bit RGB PIL.Image and dumps it to the SSD1331 OLED display.

5.2 oled.emulator

class oled.emulator.capture(width=128, height=64, rotate=0, mode=’RGB’, transform=’scale2x’,
scale=2, file_template=’oled_{0:06}.png’, **kwargs)

Bases: oled.emulator.emulator

Pseudo-device that acts like an OLED display, except that it writes the image to a numbered PNG file when the
display() method is called.

While the capability of an OLED device is monochrome, there is no limitation here, and hence supports 24-bit
color depth.

display(image)
Takes a PIL.Image and dumps it to a numbered PNG file.

class oled.emulator.dummy(width=128, height=64, rotate=0, mode=’RGB’, transform=’scale2x’,
scale=2, **kwargs)

Bases: oled.emulator.emulator

Pseudo-device that acts like an OLED display, except that it does nothing other than retain a copy of the dis-
played image. It is mostly useful for testing. While the capability of an OLED device is monochrome, there is
no limitation here, and hence supports 24-bit color depth.

display(image)
Takes a PIL.Image and makes a copy of it for later use/inspection.

class oled.emulator.emulator(width, height, rotate, mode, transform, scale)
Bases: oled.device.device

Base class for emulated OLED driver classes

cleanup()

to_surface(image)
Converts a PIL.Image into a pygame.Surface, transforming it according to the transform and
scale constructor arguments.

class oled.emulator.gifanim(width=128, height=64, rotate=0, mode=’RGB’, transform=’scale2x’,
scale=2, filename=’oled_anim.gif’, duration=0.01, loop=0,
max_frames=None, **kwargs)

Bases: oled.emulator.emulator

Pseudo-device that acts like an OLED display, except that it collects the images when the display() method
is called, and on exit, assembles them into an animated GIF image.

While the capability of an OLED device is monochrome, there is no limitation here, and hence supports 24-bit
color depth, albeit with an indexed color palette.

5.2. oled.emulator 15

https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image

ssd1306 Documentation, Release 1.5.0

display(image)
Takes an image, scales it according to the nominated transform, and stores it for later building into an
animated GIF.

write_animation()

class oled.emulator.pygame(width=128, height=64, rotate=0, mode=’RGB’, transform=’scale2x’,
scale=2, frame_rate=60, **kwargs)

Bases: oled.emulator.emulator

Pseudo-device that acts like an OLED display, except that it renders to an displayed window. The frame rate is
limited to 60FPS (much faster than a Raspberry Pi can acheive, but this can be overridden as necessary).

While the capability of an OLED device is monochrome, there is no limitation here, and hence supports 24-bit
color depth.

pygame is used to render the emulated display window, and it’s event loop is checked to see if the ESC key
was pressed or the window was dismissed: if so sys.exit() is called.

display(image)
Takes a PIL.Image and renders it to a pygame display surface.

class oled.emulator.transformer(pygame, width, height, scale)
Bases: object

Helper class used to dispatch transformation operations.

identity(surface)
Fast scale operation that does not sample the results

none(surface)
No-op transform - used when scale = 1

scale2x(surface)
Scales using the AdvanceMAME Scale2X algorithm which does a ‘jaggie-less’ scale of bitmap graphics.

smoothscale(surface)
Smooth scaling using MMX or SSE extensions if available

5.3 oled.error

Exceptions for this library.

exception oled.error.DeviceAddressError
Bases: oled.error.Error

Exception raised when an invalid device address is detected.

exception oled.error.DeviceDisplayModeError
Bases: oled.error.Error

Exception raised when an invalid device display mode is detected.

exception oled.error.DeviceNotFoundError
Bases: oled.error.Error

Exception raised when a device cannot be found.

exception oled.error.DevicePermissionError
Bases: oled.error.Error

Exception raised when permission to access the device is denied.

16 Chapter 5. API Documentation

https://docs.python.org/2/library/sys.html#sys.exit
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://docs.python.org/2/library/functions.html#object

ssd1306 Documentation, Release 1.5.0

exception oled.error.Error
Bases: exceptions.Exception

Base class for exceptions in this library.

5.4 oled.mixin

class oled.mixin.capabilities
Bases: object

capabilities(width, height, rotate, mode=‘1’)

clear()
Initializes the device memory with an empty (blank) image.

display(image)

preprocess(image)

5.5 oled.render

class oled.render.canvas(device, dither=False)
A canvas returns a properly-sized PIL.ImageDraw object onto which the caller can draw upon. As soon as
the with-block completes, the resultant image is flushed onto the device.

By default, any color (other than black) will be treated as white and displayed on the device. However, this
behaviour can be changed by adding dither=True and the image will be converted from RGB space into a
1-bit monochrome image where dithering is employed to differentiate colors at the expense of resolution.

5.6 oled.serial

class oled.serial.i2c(bus=None, port=1, address=60)
Bases: object

Wrap an I2C interface to provide data and command methods.

Parameters

• bus – I2C bus instance.

• port (int) – I2C port number.

• address – I2C address.

Raises

• oled.error.DeviceAddressError – I2C device address is invalid.

• oled.error.DeviceNotFoundError – I2C device could not be found.

• oled.error.DevicePermissionError – Permission to access I2C device denied.

Note:

1.Only one of bus OR port arguments should be supplied; if both are, then bus takes precedence.

2.If bus is provided, there is an implicit expectation that it has already been opened.

5.4. oled.mixin 17

https://docs.python.org/2/library/exceptions.html#exceptions.Exception
https://docs.python.org/2/library/functions.html#object
https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html#module-PIL.ImageDraw
https://docs.python.org/2/library/functions.html#object
https://en.wikipedia.org/wiki/I%C2%B2C
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int

ssd1306 Documentation, Release 1.5.0

cleanup()
Clean up I2C resources

command(*cmd)
Sends a command or sequence of commands through to the I2C address - maximum allowed is 32 bytes
in one go.

data(data)
Sends a data byte or sequence of data bytes through to the I2C address - maximum allowed in one trans-
action is 32 bytes, so if data is larger than this, it is sent in chunks.

class oled.serial.noop
Bases: object

Does nothing, used for pseudo-devices / emulators, which dont have a serial interface.

cleanup()

command(*cmd)

data(data)

class oled.serial.spi(spi=None, gpio=None, port=0, device=0, bus_speed_hz=8000000, bcm_DC=24,
bcm_RST=25)

Bases: object

Wraps an SPI interface to provide data and command methods.

•The DC pin (Data/Command select) defaults to GPIO 24 (BCM).

•The RST pin (Reset) defaults to GPIO 25 (BCM).

Raises oled.error.DeviceNotFoundError – SPI device could not be found.

cleanup()
Clean up SPI & GPIO resources

command(*cmd)
Sends a command or sequence of commands through to the SPI device.

data(data)
Sends a data byte or sequence of data bytes through to the SPI device. If the data is more than 4Kb in size,
it is sent in chunks.

5.7 oled.threadpool

class oled.threadpool.threadpool(num_threads)
Pool of threads consuming tasks from a queue

add_task(func, *args, **kargs)
Add a task to the queue

wait_completion()
Wait for completion of all the tasks in the queue

class oled.threadpool.worker(tasks)
Bases: threading.Thread

Thread executing tasks from a given tasks queue

18 Chapter 5. API Documentation

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://docs.python.org/2/library/threading.html#threading.Thread

ssd1306 Documentation, Release 1.5.0

run()

5.8 oled.virtual

oled.virtual.calc_bounds(xy, entity)
For an entity with width and height attributes, determine the bounding box if were positioned at (x, y).

class oled.virtual.history(device)
Bases: oled.mixin.capabilities

Wraps a device (or emulator) to provide a facility to be able to make a savepoint (a point at which the screen
display can be “rolled-back” to).

This is mostly useful for displaying transient error/dialog messages which could be subsequently dismissed,
reverting back to the previous display.

display(image)

restore(drop=0)
Restores the last savepoint. If drop is supplied and greater than zero, then that many savepoints are
dropped, and the next savepoint is restored.

savepoint()
Copies the last displayed image.

class oled.virtual.hotspot(width, height, draw_fn=None)
Bases: oled.mixin.capabilities

A hotspot (a place of more than usual interest, activity, or popularity) is a live display which may be added
to a virtual viewport - if the hotspot and the viewport are overlapping, then the update() method will be
automatically invoked when the viewport is being refreshed or its position moved (such that an overlap occurs).

You would either:

•create a hotspot instance, suppling a render function (taking an PIL.ImageDraw object, width &
height dimensions. The render function should draw within a bounding box of (0, 0, width, height), and
render a full frame.

•sub-class hotspot and override the :func:should_redraw and update() methods. This might be
more useful for slow-changing values where it is not necessary to update every refresh cycle, or your
implementation is stateful.

paste_into(image, xy)

should_redraw()
Override this method to return true or false on some condition (possibly on last updated member variable)
so that for slow changing hotspots they are not updated too frequently.

update(draw)

oled.virtual.range_overlap(a_min, a_max, b_min, b_max)
Neither range is completely greater than the other

class oled.virtual.snapshot(width, height, draw_fn=None, interval=1.0)
Bases: oled.virtual.hotspot

A snapshot is a type of hotspot, but only updates once in a given interval, usually much less frequently than the
viewport requests refresh updates.

paste_into(image, xy)

5.8. oled.virtual 19

https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html#module-PIL.ImageDraw

ssd1306 Documentation, Release 1.5.0

should_redraw()
Only requests a redraw after interval seconds have elapsed

class oled.virtual.terminal(device, font=None, color=’white’, bgcolor=’black’, tabstop=4,
line_height=None, animate=True)

Bases: object

Provides a terminal-like interface to a device (or a device-like object that has mixin.capabilities char-
acteristics).

backspace()
Moves the cursor one place to the left, erasing the character at the current position. Cannot move beyound
column zero, nor onto the previous line

carriage_return()
Returns the cursor position to the left-hand side without advancing downwards.

clear()
Clears the display and resets the cursor position to (0, 0).

erase()
Erase the contents of the cursor’s current postion without moving the cursor’s position.

flush()
Cause the current backing store to be rendered on the nominated device.

newline()
Advances the cursor position ot the left hand side, and to the next line. If the cursor is on the lowest line,
the displayed contents are scrolled, causing the top line to be lost.

println(text=’‘)
Prints the supplied text to the device, scrolling where necessary. The text is always followed by a newline.

putch(ch, flush=True)
Prints the specific character, which must be a valid printable ASCII value in the range 32..127 only.

puts(text)
Prints the supplied text, handling special character codes for carriage return (r), newline (n), backspace (b)
and tab (t).

If the animate flag was set to True (default), then each character is flushed to the device, giving the effect
of 1970’s teletype device.

tab()
Advances the cursor position to the next (soft) tabstop.

class oled.virtual.viewport(device, width, height)
Bases: oled.mixin.capabilities

add_hotspot(hotspot, xy)
Add the hotspot at (x, y). The hotspot must fit inside the bounds of the virtual device. If it does not then
an AssertError is raised.

display(image)

is_overlapping_viewport(hotspot, xy)
Checks to see if the hotspot at position (x, y) is (at least partially) visible according to the position of the
viewport

refresh()

remove_hotspot(hotspot, xy)
Remove the hotspot at (x, y): Any previously rendered image where the hotspot was placed is erased from

20 Chapter 5. API Documentation

https://docs.python.org/2/library/functions.html#object

ssd1306 Documentation, Release 1.5.0

the backing image, and will be “undrawn” the next time the virtual device is refreshed. If the specified
hotspot is not found (x, y), a ValueError is raised.

set_position(xy)

5.8. oled.virtual 21

ssd1306 Documentation, Release 1.5.0

22 Chapter 5. API Documentation

CHAPTER 6

References

• https://learn.adafruit.com/monochrome-oled-breakouts

• https://github.com/adafruit/Adafruit_Python_SSD1306

• http://www.dafont.com/bitmap.php

• http://raspberrypi.znix.com/hipidocs/topic_i2cbus_2.htm

• http://martin-jones.com/2013/08/20/how-to-get-the-second-raspberry-pi-i2c-bus-to-work/

• https://projects.drogon.net/understanding-spi-on-the-raspberry-pi/

• https://pinout.xyz/

• https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

• http://code.activestate.com/recipes/577187-python-thread-pool/

23

https://learn.adafruit.com/monochrome-oled-breakouts
https://github.com/adafruit/Adafruit_Python_SSD1306
http://www.dafont.com/bitmap.php
http://raspberrypi.znix.com/hipidocs/topic_i2cbus_2.htm
http://martin-jones.com/2013/08/20/how-to-get-the-second-raspberry-pi-i2c-bus-to-work/
https://projects.drogon.net/understanding-spi-on-the-raspberry-pi/
https://pinout.xyz/
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
http://code.activestate.com/recipes/577187-python-thread-pool/

ssd1306 Documentation, Release 1.5.0

24 Chapter 6. References

CHAPTER 7

Contributing

Pull requests (code changes / documentation / typos / feature requests / setup) are gladly accepted. If you are intending
to introduce some large-scale changes, please get in touch first to make sure we’re on the same page: try to include a
docstring for any new method or class, and keep method bodies small, readable and PEP8-compliant. Add tests and
strive to keep the code coverage levels high.

7.1 GitHub

The source code is available to clone at: https://github.com/rm-hull/ssd1306.git

7.2 Contributors

• Thijs Triemstra (@thijstriemstra)

• Christoph Handel (@fragfutter)

• Boeeerb (@Boeeerb)

• xes (@xes)

• Roger Dahl (@rogerdahl)

• Václav Šmilauer (@eudoxos)

• Claus Bjerre (@bjerrep)

25

https://github.com/rm-hull/ssd1306.git

ssd1306 Documentation, Release 1.5.0

26 Chapter 7. Contributing

27

ssd1306 Documentation, Release 1.5.0

CHAPTER 8

ChangeLog

Version Description Date
Upcoming TBD
1.5.0*

• Performance improvements
for SH1106 driver (2x frame
rate!)

• Support for 4-bit greyscale
OLED (SSD1325)

• Landscape/portrait orienta-
tion with rotate=N parameter

2017/01/09

1.4.0
• Add savepoint/restore func-

tionality
• Add terminal functionality
• Canvas image dithering
• Additional & improved ex-

amples
• Load config settings from file

(for examples)
• Universal wheel distribution
• Improved/simplified error re-

porting
• Documentation updates

2016/12/23

1.3.1
• Add ability to adjust bright-

ness of screen
• Fix for wrong value

NORMALDISPLAY for
SSD1331 device

2016/12/11

1.3.0
• Support for 16-bit color

OLED (SSD1331)
• Viewport/scrolling support
• Remove pygame as an install

dependency in setup
• Ensure SH1106 device

collapses color images to
monochrome

• Fix for emulated devices: do
not need cleanup

• Fix to allow gifanim emulator
to process 1-bit images

• Establish a single threadpool
for all virtual viewports

• Fix issue preventing multiple
threads from running concur-
rently

• Documentation updates

2016/12/11

1.2.0
• Add support for 128x32,

96x16 OLED screens
(SSD1306 chipset only)

• Fix boundary condition error
when supplying max-frames
to gifanim

• Bit pattern calc rework
when conveting color ->
monochrome

• Approx 20% performance
improvement in display
method

2016/12/08

1.1.0
• Add animated-GIF emulator
• Add color-mode flag to emu-

lator
• Fix regression in SPI interface
• Rename emulator transform

option ‘scale’ to ‘identity’

2016/12/05

1.0.0
• Add HQX scaling to capture

and pygame emulators
• SPI support (NOTE: contains

breaking changes)
• Improve benchmarking ex-

amples
• Fix resource leakage & noops

on emulated devices
• Additional tests

2016/12/03

0.3.5
• Pygame-based device emula-

tor & screen capture device
emulator

• Add bouncing balls demo,
clock & Space Invaders ex-
amples

• Auto cleanup on exit
• Add bounding_box

attribute to devices
• Demote buffer & pages at-

tributes to “internal use” only
• Replaced SH1106 data sheet

with version that is not “pre-
liminary”

• Add font attribution
• Tests for SSD1306 &

SSH1106 devices
• Add code coverage & upload

to coveralls.io
• flake8 code compliance
• Documentation updates

2016/11/30

0.3.4
• Performance improvements -

render speeds ~2x faster
• Documentation updates

2016/11/15

0.3.3
• Add PyPi badge
• Use smbus2

2016/11/15

0.3.2
• Fix bug in maze example (in-

teger division on python 3)
• Use latest pip
• Add tox & travis config (+

badge)
• Add RTFD config
• Documentation updates

2016/11/13

0.3.1
• Adjust requirements (remove

smbus)
• Default RTFD theme
• Documentation updates

2016/11/13

0.3.0
• Allow SMBus implementa-

tion to be supplied
• Add show, hide and clear

methods
• Catch & rethrow IOError

exceptions
• Fix error in ‘hello world’ ex-

ample
• Cleanup imports
• Allow setting width/height
• Documentation updates

2016/11/13

0.2.0
• Add Python 3 support
• Add options to demos
• Micro-optimizations
• Remove unused optional arg
• Fix bug in rendering image

data
• Added more examples
• Add setup file
• Support SH1106
• Documentation updates

2016/09/06

28 Chapter 8. ChangeLog

CHAPTER 9

The MIT License (MIT)

Copyright (c) 2016 Richard Hull & Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

29

ssd1306 Documentation, Release 1.5.0

30 Chapter 9. The MIT License (MIT)

Python Module Index

o
oled, 13
oled.device, 13
oled.emulator, 15
oled.error, 16
oled.mixin, 17
oled.render, 17
oled.serial, 17
oled.threadpool, 18
oled.virtual, 19

31

Index

A
add_hotspot() (oled.virtual.viewport method), 20
add_task() (oled.threadpool.threadpool method), 18

B
backspace() (oled.virtual.terminal method), 20

C
calc_bounds() (in module oled.virtual), 19
canvas (class in oled.render), 17
capabilities (class in oled.mixin), 17
capabilities() (oled.mixin.capabilities method), 17
capture (class in oled.emulator), 15
carriage_return() (oled.virtual.terminal method), 20
cleanup() (oled.device.device method), 14
cleanup() (oled.emulator.emulator method), 15
cleanup() (oled.serial.i2c method), 18
cleanup() (oled.serial.noop method), 18
cleanup() (oled.serial.spi method), 18
clear() (oled.mixin.capabilities method), 17
clear() (oled.virtual.terminal method), 20
command() (oled.device.device method), 14
command() (oled.serial.i2c method), 18
command() (oled.serial.noop method), 18
command() (oled.serial.spi method), 18
contrast() (oled.device.device method), 14
contrast() (oled.device.ssd1331 method), 15

D
data() (oled.device.device method), 14
data() (oled.serial.i2c method), 18
data() (oled.serial.noop method), 18
data() (oled.serial.spi method), 18
device (class in oled.device), 13
DeviceAddressError, 16
DeviceDisplayModeError, 16
DeviceNotFoundError, 16
DevicePermissionError, 16
display() (oled.device.sh1106 method), 14

display() (oled.device.ssd1306 method), 14
display() (oled.device.ssd1325 method), 14
display() (oled.device.ssd1331 method), 15
display() (oled.emulator.capture method), 15
display() (oled.emulator.dummy method), 15
display() (oled.emulator.gifanim method), 15
display() (oled.emulator.pygame method), 16
display() (oled.mixin.capabilities method), 17
display() (oled.virtual.history method), 19
display() (oled.virtual.viewport method), 20
dummy (class in oled.emulator), 15

E
emulator (class in oled.emulator), 15
erase() (oled.virtual.terminal method), 20
Error, 16

F
flush() (oled.virtual.terminal method), 20

G
gifanim (class in oled.emulator), 15

H
hide() (oled.device.device method), 14
history (class in oled.virtual), 19
hotspot (class in oled.virtual), 19

I
i2c (class in oled.serial), 17
identity() (oled.emulator.transformer method), 16
is_overlapping_viewport() (oled.virtual.viewport

method), 20

N
newline() (oled.virtual.terminal method), 20
none() (oled.emulator.transformer method), 16
noop (class in oled.serial), 18

32

ssd1306 Documentation, Release 1.5.0

O
oled (module), 13
oled.device (module), 13
oled.emulator (module), 15
oled.error (module), 16
oled.mixin (module), 17
oled.render (module), 17
oled.serial (module), 17
oled.threadpool (module), 18
oled.virtual (module), 19

P
paste_into() (oled.virtual.hotspot method), 19
paste_into() (oled.virtual.snapshot method), 19
preprocess() (oled.mixin.capabilities method), 17
println() (oled.virtual.terminal method), 20
putch() (oled.virtual.terminal method), 20
puts() (oled.virtual.terminal method), 20
pygame (class in oled.emulator), 16

R
range_overlap() (in module oled.virtual), 19
refresh() (oled.virtual.viewport method), 20
remove_hotspot() (oled.virtual.viewport method), 20
restore() (oled.virtual.history method), 19
run() (oled.threadpool.worker method), 18

S
savepoint() (oled.virtual.history method), 19
scale2x() (oled.emulator.transformer method), 16
set_position() (oled.virtual.viewport method), 21
sh1106 (class in oled.device), 14
should_redraw() (oled.virtual.hotspot method), 19
should_redraw() (oled.virtual.snapshot method), 19
show() (oled.device.device method), 14
smoothscale() (oled.emulator.transformer method), 16
snapshot (class in oled.virtual), 19
spi (class in oled.serial), 18
ssd1306 (class in oled.device), 14
ssd1325 (class in oled.device), 14
ssd1331 (class in oled.device), 14

T
tab() (oled.virtual.terminal method), 20
terminal (class in oled.virtual), 20
threadpool (class in oled.threadpool), 18
to_surface() (oled.emulator.emulator method), 15
transformer (class in oled.emulator), 16

U
update() (oled.virtual.hotspot method), 19

V
viewport (class in oled.virtual), 20

W
wait_completion() (oled.threadpool.threadpool method),

18
worker (class in oled.threadpool), 18
write_animation() (oled.emulator.gifanim method), 16

Index 33

	Introduction
	Python usage
	Color Model
	Landscape / Portrait Orientation
	Examples
	Emulators

	Hardware
	Identifying your serial interface
	I2C vs. SPI
	Tips for connecting the display
	Pre-requisites

	Installation
	From PyPI
	From source

	API Documentation
	oled.device
	oled.emulator
	oled.error
	oled.mixin
	oled.render
	oled.serial
	oled.threadpool
	oled.virtual

	References
	Contributing
	GitHub
	Contributors

	ChangeLog
	The MIT License (MIT)
	Python Module Index

